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SUMMARY

The Beattie~-Bridgeman equation of state was used to develop the
equations of several of the thermodynamic properties and flow process
correction factors for gases. The increase in the specific heats due
to the vibration of diatomic molecules was included by assuming the
molecules to be perfect harmonic oscillators. Thermodynamic and
flow process equations are theoretically developed. The particular
flow processes investigated were isentropic expansions and flow through
normal shock waves,

The calculation procedures for isentropic expansions and flow
through normal shock waves are included in the appendix. Also in-
cluded are the results of several calculations in which air was used
as the media of flow. Graphs of the thermodynamic properties and
Beattie=-Bridgeman correction factors for air are included to provide
a general picture of the effect of temperature and pressure,

NOMENCLATURE
a, b, ¢, 4,, B, Beattie-Bridgeman constants defined in appendix
a Speed of sound, ft/sec
C Specific heat, Btu/lb
€y €1 €4 Defined by Eq. (3)
E Defined by Eq. (44)
F Defined by Eq. (38)
81> 82> 83 Bes 85 8 Defined by Eq. (6)
G Defined by Eq. (24)
h Enthalpy, Btu/lb
1 Defined by Eq. (51)
J Defined by Eq. (47)
k 2,7/ (y =1
K Defined by Eq. (45)
L Defined by Eq. (61)
M Mach number
p Pressure, psia
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N oy R

PRESUBSCRIPTS

SUBSCRIPTS

tr

vib

Heat energy, Btu/lb

Gas Constant, (ft31b) / (in. 2 OR 1b-mol)
Entropy, Btu/lb °R |

Temperature, °R

Internal energy, Btu/lb

Volume, ft3
Velocity, ft/sec
Mass flow, b/t sec
Defined by Eq. (58)
Specific heat ratio

Characteristic atomic vibration temperature

in lowest energy state, OR
Densit}(; lb/ft%

. o

Perfect gas property

Compression component

Constant pressure

Rotational component

Total (isentropic stagnation condition)
Constant temperature

Constant volume

Translational component

‘Vibrational component

Infinite volume property (zero pressure)
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INTRODUCTION

For wide ranges of pressures and temperatures, the perfect gas
equation of state does not define accurately the relation between specific
volume, pressure, and temperature of a gas. Furthermore, the ratio
of specific heats changes considerably from the perfect gas values when
the temperature and pressure of the gas differ widely from standard
conditions. However, as long as the temperature remains between 3000
and 700°R and the pressure remains between 0 and 30 psia during a
thermodynamic process, the perfect gas relations provide relatively
accurate values of the thermodynamic properties of gases.

The Gas Dynamics Facility, Arnold Engineering Development Center
(GDF - AEDC) has wind tunnel circuits capable of producing pressure
variations from near 0 to 2500 psia and temperature variations from
about 70° to about 20000R, Since test results based on the perfect gas
relations and constant specific heats are apt to be in error, a method of
correction is needed.

The Beattie-Bridgeman equation of state and the values of the con-
stants for several gases were published in 1928 (see Ref. 1). The
purpose of the equation was to provide a means of calculating more
accurate values of the thermodynamic properties of actual gases.
However, the thermodynamic relations developed from this equation
are extremely complicated and cumbersome when compared with the
relations developed from the perfect-gas equation of state. The addi-
tional work involved is not ordinarily justified by the increased accuracy
of the calculations; therefore, the equation has never been used exten-
sively. :

The need for greater accuracy in research work has caused a re-
newed effort to develop methods of calculating gas properties with an
accuracy in keeping with the precision of experimental instrumentation,
This work is submitted as a step toward this end, and with an imme-
diate objective of permitting a more accurate calibration of the GDF
wind tunnels,

This report is an elaboration of the work reported in Ref. 2 and
makes several changes such as: (1) the use of engineering units, (2)
the addition of two more terms to the infinite series expressing density
ratio, (3) the use of more recently determined values of the character-
istic temperature of vibration for molecular nitrogen and oxygen, (4)
the use of standard gas mixture proportions for air as reported in Ref.
3, and (5) the inclusion of two specific methods of solving flows through
normal shock waves.
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DEVELOPMENT OF THE THERMODYNAMIC EQUATIONS

DENSITY

The Beattie-Bridgeman equation of state for an imperfect gas is

(see Ref., 1)

8 (1-55) |- -2))

Expanding Eq. (1) and collecting terms we can obtain

and using the relation

p-3

- we can write Eq. (2) in the form

p=pRT (1 + e,p +e,F + ep*)

Let p be represented by an infinite series of the form

p=rr(Ltgp+ap +ap +...)

Obtaining successive powers of Eq. (4), substituting in Eq. (5)

(1)

(2)

(3)

, (4),,

(5)

and solving for the values of g through g gives the following relations:
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€y

g‘=—_T
ﬁle,.z—-e2
2= T Rjr)?
5e,(e, —e’)—e,
g3= (RT)3
6e e, + 3¢, +7e,°(2ef —8e,)
g = 1€3 2 (RT)41 1 2 (6)

7 le,ey —de, (e +e,0,) + 662 (26, —¢,%)]
(RT)®

8 =

g = 6[10e2(3e,2 + 2e,e,) + 11e,*(2e,2 —5e,) — 2¢,’ ] + €3(4e, — 73 e e,)
¢ (RTY

Substituting in Eq. (5) the perfect gas relation

P

P = RT
we obtain the density ratio

£

o = LTEBP &P P . (7)

SPECIFIC HEAT

The internal energy of a gas consists of the kinetic energy of the
molecules and the atoms within the molecules, and the potential energy
of the molecules, When energy is added to a gas, each of these internal
energy factors takes up its portion according to the characteristics of
the gas involved.

The kinetic energy of the molecules is dependent upon the number
of significant degrees of freedom of translation and rotation, and the
temperature of the gas. Most gas molecules take up an amount of
energy very nearly equal to 1/2 RT per mol of gas for each significant
degree of freedom. Translation takes place along the three axes of
space for all temperatures, even approaching absolute zero. Thus, the
translation of the molecules provides three degrees of freedom. Rota-
tion about the three axes of space begins at some finite temperature
above absolute zero, and the rotational degrees of freedom become fully
activated at a slightly higher temperature. The number of axes about
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which rotation is significant and the temperature above which full activa-
tion is attained are dependent upon the particular gas involved. Once a
particular gas is selected and the number of significant degrees of free-
dom determined, the molecular kinetic energy becomes a function of the
temperature of the gas alone,
3- The atomic kinetic energy is dependent upon the characteristics of
{ the individual atoms, the number of atoms involved, and the tempera-
ture of the gas. This energy is held by the moving atoms as they oscil-
| late with respect 1o one another within the molecule and is called the
vibration energy. * As with the molecular kinetic energy, once the
particular gas is selected and the vibration characteristics determined,
“\xthe atomic kinetic energy becomes a function of the temperature of the
|gas alone.

The molecular potential energy is the energy required to force
the molecules into close association with one another. In any real gas
this energy is a function of any two of the variables of state, p, v, and
7. The perfect gas equation of state and its accompanying thermody-
namic relations consider only the molecular kinetic energy; they neglect
both the atomic kinetic energy and the molecular potential energy. The
Beattie-Bridgeman equation of state and its accompanying thermody-
namic relations are based upon a consideration of the molecular kinetic
and potential energy. If the atoms involved approach perfect harmonic
oscillators, the atomic kinetic energy can be easily accounted for in
either the perfect gas or Beattie-Bridgeman thermodynamic relations.

The rotation of monatomic molecules does not represent a signifi-
cant amount of energy since its moment of inertia is negligible about
the three axes of space., Since there is only one atom present in the
molecule, there can be no atomic vibration. Thus, the internal energy
of a monatomic gas consists of only the molecular kinetic energy of
translation and the molecular potential energy. From the preceding
discussion we can see that the internal energy of a monatomic gas should
be about 3/2 RT per mol when the molecular potential energy is negligible,

The diatomic molecule presents a problem which is considerably
different from the monatomic molecule. The three degrees of freedom

* The electronic, ionization, and dissociation energies will not be
discussed since they become significant only at temperatures above
the range considered in this work.

10
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of translation remain the same. However, considering the molecule to
have a dumb-bell like form, where the atoms are spaced a shortdistance
apart and held together by a rigid bar, the moments of inertia about the
three axes of space are no longer negligible, Visualizing one axis
coinciding with the bar connecting the two atoms, we see that the moment
of inertia about this axis is negligible when compared with the moments
of inertia about the other two axes of space. From this analysis we see
that for diatomic molecules two degrees of freedom of rotation must be
added to the three degrees of freedom of translation. Thus, the internal
energy of a diatomic gas should be about 5/2 RT when the molecular
potential energy and the atomic kinetic energy are negligible.

The potential energy of a gas approaches zerc as the pressure
approaches zero (or the volume becomes infinite) regardless of the
gas temperature. Thus, one can conceive of a hypothetical expansion
of a gas by a constant-temperature process until the volume becomes
infinite. Then the only internal energy remaining in the gas is the
kinetic energy of the molecules and the kinetic energy of the atoms.
Although not rigorously additive, a sufficient degree of approximation
can be obtained by separating the kinetic energy into the sum of its
three components as follows:

Loo = Utr + Uy + Uvib (8)

(z» and uzyipb are not independent; see Ref. 4).

Since the internal energy of a perfect gas considers the translational
and rotational energy, we can write Eq. (8) as

\

oo = ol + Lyib (9)
The specific heat of a gas is given by the thermodynamic relation
c-22 (10)

d
where

dq = du + pdv (11)

To determine the specific heat due to vibration, the pressure is assumed
zero and we can write from Eqs. (10) and (11)

duyib (12)
dT

T U vib
Cyip dT = du vib (13)
0 0

11

Cvib =

Integration gives
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or

T
Uyib =f Cvip dT (14)
0

Both C, and €, will be increased by C;, when atomic vibrations are
considered.

The internal energy of the gas at infinite volume is given by Eq. (8)
as uw. To obtain the total internal energy one can assume a hypothetical
constant temperature compression of the gas to normal pressure; then
the total internal energy of the gas is the sum of the infinite volume in-
ternal energy and the energy of compression. Thus, we can write

U= Uso + Up = oU+ Uvyip + Uc (15)

where u. is a function of any two of the state variables p, v, and T.
Considering it to be a function of v and T we can write

ue = ulw, T) . (16)

- (du gu
e (28) - (2) -

Since a constant temperature process is to be used for the compression,
Eq. (17) can be written

duc =<au> dv (18)
dv [ 1

Integrating Eq. (18) we have

. f ”(g;u.>T dv (19)

Wheﬁ the thermodynamic identity (37> = T(—) -p is used,
' T

ucif T(%)v d‘u—;/v pdv (20)

o0

from which

Eq. (19) becomes

When we expand Eq. (2), differentiate with respect to T holding » constant,
and substitute into Eq. (20), we get

v
ue = Ao . 3Re  Apa + 8BoRc  8BobRc | 4,
v? ' o P T2 A i
oo

12
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Integration and the substitution of p=1 gives

_ 4o 3c 3_30__&61) s<BobC> 2
uC_R [_‘p<R + T2) -0 <2T2 2R +p ,TZ ( 1)

Using Eqgs. (14), (21), and the perfect gas relation u = ,C,7

in Eq. (15) produces the equation for the total internal energy of a
Beattie-Bridgeman gas considering the contribution of the atomic
vibrations. This equation is

T
4 3Boc A B,b
u=T3oCy+ %Ff Cvib dl +R [—p(ﬁ‘* %) _pz<2T(;C - 2;207")+ o’ < ;’c)] (22)
0 |

If we use the perfect gas relation

| R=oColy=1) | (23)
and let
T
G=-I%?f Cyip dT (24)
0 .

Eq. (22) becomes
o Bob '
u=oCyT 4 14 (oy—~1) {c_p (%_T_ N §_> __pz<3§;30 ~ gRT> +pa( Tﬂ (25)

Using Eqgs. (10) and {11) to obtain the specific heat for a constant
volume process gives

cv=(ﬂ> (26)

ar/,

Substituting Eq. (21) into Eq. (15) and differentiating with respectto T
with v constant produces

_(du) _ _dov duvib 6Rc (1 B, Bpb 2) 2
C”—<dT>U_dT+dT+T3p TR PT TP (27)

Using Eq. (12) and the perfect gas relation

dou

dT

we have the specific heat at constant volume for a Beattie-Bridgeman
gas with the contribution of the atomic vibrations considered

OC‘U =

B Bob '
CU=OC‘U+ Cvib+ 611_?30 (4] <l+?op——-39—pz> (28)

13
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The specific heat at constant pressure can be determined from the
thermodynamic identity

Cp-cvi_TM (29)
(ap/av)T

Obtaining (9p/97T); and (9p/9v) ; from Eq. (2) we find

2
g [(1 +ZT£3 p) (1 + Bop — Bobpz>] (30)
Cp-Co=R 1+ 2e z 3
0+ 3ep" thegp

With the equations for C, and (,, the ratio of specific heats is determined
in the usual way as

ENTHALPY

The enthalpy of a gas is defined by the equation

h=u+—p-—
p

I1f we rewrite Eq. (2) in the form

p A A B Bob
Bt tor v [roo (- e ) oo (G- - ) o (%))

and add Eq. (25), we get the enthalpy relation for a Beattie-Bridgeman
gas with the contribution of atomic vibrations considered:

b= CT + (-1 |6 (3_2_’40__4L> z(iﬁ‘ﬂ;SBOC_ ) 3 (_2Bobe.
R R l+p °"Rr " 1) TP \Grr T or Bob“’(r‘)

Using the two perfect gas relations

. oC
oCyp = ‘;;’
(31)
oh = oCpT

we obtain the ratio of the Beattie-Bridgeman enthalpy to the perfect gas
enthalpy:

b (oy =1 ( _ 2A0_4_c_> 2<3Aoa _ 5Boc > s(2Bobe) (32
1+ {G“’ Bo— r —75) *0 \Grr ~ o "Bt +p(T)( )

14
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ENTROPY

Entropy is a state variable the same as p, v, T, and z, Therefore,
we may obtain the change in entropy between any two gas conditions by
proceeding from one condition to the other by any desired method or
path,

The thermodynamic relation for entropy is

. Cy (ap)
dS=—‘7—;—dT+ ‘aTU dv

Integrating between point : and o, we get

o fro o 3
- c P
fds= j T“”*f (ﬁ)vd”
1 1 1

Holding T constant at 7, and evaluating the change in entropy involved
when v changes from v to v, and designating this change as (S, -S),
we have

(so—s,)ﬁfvo (%)U d (33)

Yr=T,)

Next, holding » constant at v,, evaluating the change in entropy involved
when T changes from T, to T, and designating this change as (S, -S,),
we have

. To
(So—‘Sx)xzf C;’ dT (34)
T .

Ho=v,)

Finally, the total change in entropy when proceeding from point 1 to
point o is given by adding Eqs. (33) and (34):

T vo
o c a
So—=5,=(S,=5), +(S,=5,), =f TU dT+f (gg‘) w
v
T v

Ho=v,) NT=Ty)
Replacing ¢, in Eq. (34) by Eq. (28), we get

T T T
oocv acvib ° 6Rc B, » Bob dT (35)
(SO'—Sx)l= '—TTdT-i- ——T-"'—dT+ T_.,P 1+p?_p T
T T, T

(o=p,)

[]

Using Eq. (23) and evaluating the first integral of Eq. (35) gives
1

T, r oy —1
R a7 _ (_)
povas . T R In T,

i

15
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Let the second integral of Eq. (35) be defined as

Toc b E ’

Lvib g _ Lo 3

b ar RlnE.l (36)
T,

Evaluating the third integral of Eq. (35) we have

TO b
] B Bob 2B,b 1
R Sp (1enfe 2 Bt ) ar g [cp" <2+"°B"_p°z ) (Tx’ —TLo’)}

3
Tl(P = Po)

Replacing these three integrals in Eq. (35) we have

1
- = R 4to | (22)7 7T (E2) | wone (2 oo o0 2260 (- ) | 68D

or

1)0 N
2B
So-50, - f f[20d (50 38 3 (2 ) - 3 (250 ]
‘I)1 )

(r=r,

Obtaining (QI—’) from Eq. (2) and substituting into Eq. (33) gives
v

Integrating, replacing 1 by ¢ and adding to Eq. (37) gives

1 .
- ZoYoy=1E0 py | _ ( . <_Bo_c_ Bob)
SO ”‘:SX =R ln [(Tl ) El Po Po BO + Ta3 Po Toa 2

2Bobe 2¢ Bpe Bob 2B ybe
+ po 37?03 M (B"+ Tﬁ) ol (T?’ - §> - o 3T}

Letting

) . (Boc Bob) _ p 2Bobe (38)

TP T T2 373

InF =p <Bo.+ 3,—2

we have the change in entropy between condition o and condition 1 for a
Beattie~-Bridgeman gas considering the contribution of atomic vibrations:

1 .
S,~S, =R (%)fﬂy‘l Eo py F (39)
1

E, po F,

16
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‘DIATOMIC VIBRATION/ CORRECTIONS

Diatomic molecules have only one normal mode of vibration. If the
vibration characteristics of the molecule approach the characteristics
of a perfect harmonic oscillator, the vibration component of specific heat
is given as (see Ref. 5)

. 6/2T ' (8/T)* exp 6/T
Cib = R[Wl =R Toporr—y (40)

When Cyj, in Eq. (14) is replaced by Eq. (40), it becomes

T 2
. h 6/2T
"“b‘[‘f ’:sinhze72T5J dl
0

To integrate let y
Y =37

Then dv = -_0 . o
Y 57 47 7

Note that as 7-0, y-= and as 7-7, y-y. Thus,

’ o[ _a
wib =R | ey
>3

Dividing through by RT we have

T y
uvib o L wdl = -y f| —L— 4
Rt -0 RT‘]; Coip dT = =y fsinh’y (41)

which, when integrated, yields

G W | (42)
exp (2y) =1

Equation (42) gives the contribution of the vibration of the atoms to
the internal energy of a diatomic gas provided the vibration character-
istics of the molecule approach the characteristics of a perfect harmonic
oscillator,

Evaluating Eq. (36) in a similar manner, we obtain

T, To T,
Cuib gy § Cuib gy o §  Cwib gp_ gy Eo (43)
T T 0 T 0 T E,
1

We find the solution ot the first right hand integral to be

T y ; y
Cvib Y .
-—-1]%—~dT=——R sinh{y = R{ycoth y—ln]smhy[

0 % <

17
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Since we are dealing with only real values of ¥, sinh y is always positive.
Thus, |sinhy | = sinhy. Substituting the limits we have

- T ) 2
‘RIE :'f%idT;R{ycothy—ansinhy) (44)
0 ;

Solving Eq. (44) for E gives

exp [2y/(exp 2y — 1)]
1 —-»exp(— 2y)

E =

DEVELOPMENT OF THE FLOW PROCESS EQUATIONS

ISENTROPIC FLOW

Since an isentropic process involves no change in entropy, we may
equate the right side of Eq. (39) to zero.

Thus,
1
y=-1 g p, F
= | T\e E oDy
0 " <T1> E, p F
or
|
1t<L>oV-I E/F Vp
T, E/F, 1/p,

Multiplying both sides by p/p, and rearranging

oY
P =<_T)”y_1 E/F__P/pRT
Py r E\/F, p/p,RT,

1

Using Eq. (4) and letting

K = % (L+ep+e,p® + ep*) o)
we obtain
4
P (_l)c}"l K (46)
Py - T, K
Let
. (47)

18



AEDC-TR-57-10

as defined by Eq. (32); then we can obtain

b= oCpTI ‘ (48)
Using the thermodynamic relation

Vi< 2k~ h) (49)
and replacing & by Eq. (48) we have

vt = 267 () (50)

The thermodynamic relation for the speed of sound is

cr(@),

Differentiating Eq. (4) and substituting in the above equation we get

a® = yRT[1 + 2e,p + 3e,p? + de,p’]

Letting
I = —);//—[1+2e1p+3e,p’+4e3p’] (51)
we obtain or s 7«(}6’(”47 P :(» b et 7
= IgRT = loat) . BB
Dividing Eq. (50) by Eq. (52) and using Eqs. (23) and (31) gives
. T ]t p P
y oV 2 (Zgfe ) (53)
a’ (oy-1)1 _
Solving for T—Tf produces
-1 2
ﬁ_ ) _0L2__ IM* + ] (54)
T It
or solving for T we have
T - Ty It ;’J v (55)
% m sy

Rewriting Eq. (46) in terms of stagnation quantities and substituting
Eq. (54) gives — S e

, oY f
| oy-1

oy =1 2 i
P _ 5 M* 47 Ke ] (56)
P Je kK

19
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Solving Eq. (56) for M we obtain

e (Y T - (57)
1

Substituting Eq. (48) into Eq. (49), dividing by Eq. (52) and using
the relations in Eqs. (23) and (31)and ¥ = Z—: we find that

2 2 J
2h, | Mt yET T
V’ = MZ
Letting , -
2 . 2
2h; Mr . 2 I (58)
o'y—l 1

and solving for ¥* we get the equation

2 2 A X 59
M_oy~111—X (59)

Replacing M* in Eq. (55) by Eq. (59) we obtain the solution
Tl %(1 _X (60)

By substituting Eq. (48) into Eq. (49), multiplying both sides by
_p—V, and using Egs. (23) and (31) it is found that
o

p - p oY — 1 <2ht—V’>
pV ~ pRTJ 20y

v
Letting
_ P 61)
L - pRTJ (
and .
L) S
oy~ 1

we obtain the result,

Z)_EV_ S L <M)
(62)

20
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FLOW THROUGH NORMAL SHOCK WAVES

In order to determine the relation between the variables of state on
the forward and aft side of a normal shock wave it is necessary to apply
three equations to the flow through the shock wave:

Conservation of Mass
w = pV, = oV, (63)

Conservation of Momentum

Br_ Py _y, (64)

w

Conservation of Energy
h, =h

i1

t2 (65)

NOTE: The subscripts 1 and 2 apply, respectively, to conditions
forward and aft of the shock wave,

Substituting Eq. (63) into Eq. (64) and using Eq. (62) gives

2h v 1% 2h v
t2 1 2 3] - -2
L, <V12 V; - V_x) - L < v, B l) -k <1 v,

From Eqs. (63), (58), and (65) it follows that
o) 8 (2 <28 (6 )

Multiplying through by x, Z—; and collecting terms, we get

(%:-)’ [X,_(L,—k)} + % [Xl (k=L + Ll} ~L, =0 (66)
From Eqs. (58), (65), and (63) we can establish that
X (P2 (67)
X, (Px)

Also, from Eqs. (48) and (65) we find
T, I, =T,/ (68)

2 "2

Let Eq. (53) be written in the form

M2 - LT, (4, Ty, = 1aT2)
M, LT, U, T, =1,T)
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By using Eqs. (68), (60), and (67) it follows that

M2 o LT, P12 69
M* LT, (Pz) ( )
Write Eq. (62) in the form
P2 paly (1 -v,%/2h,)
P, pily (1 =V,/2h, )

in which we substitute Eq. (58) to get

P2 paL, (1 - X)) (70)
Py piL, (1 - X,)

Substituting Eq. (63) into Eq. (64), dividing through by two times
Eq. (48) and using Eq. (65), we obtain
P2 P2 sz - Py n P1 Vlz
2o CP Tt1 ]h 2 htz 20 CP Ttx jtl 2 htl

Using Eq. (58) and the relation

P = RT

1 P\ X 1 p
o [ () 2] - o [+ (2)
[ZOCP T de oP /; RTZ] \:2on Ty Je, op/y RT,

Using the perfect gas relation

R ocp(o)’ -1
oY
and solving for pr.,, we get
L oy=1
Tx[(op)z % T“ ]tx N < 20y )TZJ (71)
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CONCLUDING REMARKS

Numerous equations have been derived in the preceding pages. For

the convenience of readers who are interested in the basic equations
required for the calculation of specific gas properties, the following list
is provided:

Property Eq. Property Eq.

Cp 30 K 45

Co 28 L 61

o/ op 7 E 44

1 51 F 38

J 47 So=S, 39
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APPENDIXES

A. CONSTANTS FOR AIR

B. CALCULATION PROCEDURES

The calculation of isentropic expansions of air by the method pre-
sented is both simple and rapid. Usually the second iteration provides
a sufficiently accurate result. The difference between the results
obtained by using the perfect gas equations and the Beattie-Bridgeman
equations is generally less than 5 percent for the range of pressures
and temperatures investigated.

The calculation of air flows through normal shock waves, by the
method presented, is rather tedious and time consuming if a desk calcu-
lator is used. However, most electronic digital computers can handle
the problem easily if it is necessary to have a greater accuracy than
provided by the perfect gas equations. The difference between the
results obtained for air with the perfect gas equations and the Beattie-
Bridgeman equations is generally less than 5 percent for the range of
pressures and temperatures investigated.

It is interesting to note that the Beattie-Bridgeman calculations
predict an increase in stagnation temperature across a strong normal
shock wave, Figure 8 of Ref. 7 shows a recovery factor slightly
greater than one at the stagnation point for the Mach 3. 24 condition,
verifying this prediction. The fact that the recovery factor decreased
at Mach 4. 18 and 4. 92 can probably be attributed to the low accompany-
ing p,,. Note that the table of normal shock wave calculations shows a
decrease in 7T, with decreasing p, for constant 7, and p,/p, .
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APPENDIX A
CONSTANTS FOR AIR

The Beattie-Bridgeman constants used in the numerical computations
for air are:

_ f1* 1b _ £t
A, = 4906.5 15 mol inZ a = 0.30931 o
fe? _ fe*:
B, = 0.73860 Tb mol b = -0.17636 1b mol

s fOR
4,0543 x 10 Tb ol

o
i

Other constants used in the computations are:

oy = 14000 o€y = 0.17141 153‘;1

_ ft* Ib/in? Btu
R }0.729 SR 1b mol 0.068561 LoR

A

B AN LY
o W
i e

From the composition of standard air given in Ref. 3, it is noted
that N, and 0, are the only polyatomic molecules of significant concen-
tration. Hence, we may consider a composition of 0.78088 N, and
0.2095 0, to determine the vibration components of the various thermo-
dynamic quantities. Due to the form of Eq. (40) the gpecific heat of
vibration for oxygen and nitrogen will be additive. Thus, we can write

CVibail‘ = 0.78088 CVisz + 0'2095 Cviboz (72)

Theta may be calculated from the equation

_ hoec
0 = k
where h = Plancks constant = 6.6234 x 10 ™% erg sec
k = Boltzmanns constant = 1.3803 x 10™*° erg/°K

¢ = Speed of light 2.9978 x 10*° cm/sec

We Normal mode of vibration + ¢, ——

Il
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Unfortunately, the value of we for a given molecule has several values
which are dependent upon the state of the molecule. However, since the
temperature range covered in this work is too low to shift an appreciable
proportion of the molecules into the higher electronic levels, the normal
or unexcited state is used. Reference 6 gives these values as

1
2359.6 o

e
@
=
i

n

1
1580.4 L

Thus, we calculate

6y, = 6109.7 °R

6p, = 4092.1°R

The specific heat of air due to vibration can now be calculated from
Eqs. (40) and (72) using the above values of 6. Thus, we obtain

Coib oo = 706.85/T |, 245.22/T ’ (73)
ViDair sinh (3054.9/T) sinh (2046.1/T)

In a similar manner G for air is determined from Eq. (42) to be

Gupp = 47709/ T _ 857.20/ T ., (74)
a 1 —exp ( 6109.7/T) 1—exp (4092,1/T)

Since hE is desired for Eq. (39), we must write
InEgaj = 0.78088 In Ey, + 0.2095 In E02

From this we obtain
Eair - ENzo.'lsoss E020.2095

By using Eqs. (42) and (44) the final result is found to be
0.78088 xp G 0.2095
Eair = |:l °xp GNZ ] l: o 02 :' (75)

—exp(—~6109.7/T) 1-exp (-4092.1/T)
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APPEMDIX B
CALCULATION PROCEDURES

ISENTROPIC EXPANSION

After an isentropic expansion from the stagnation conditions 7, and
p;,, to apressure p,, the Mach number, ¥,, and temperature, 7, canbe
obtained as follows:

(1) Determine the perfect gas values of the Mach number, _# and
temperature T .

(2) Obtain I,, J, and K, for the values of p, and ,7,. Obtain J, and
K, for the values of p, and T,

(3) Solve Eq. (57) for M, and Eq. (55) for T,.

(Note: The last value obtained for a quantity should be substituted in
subsequent equations which require that quantity. For example, the
value of M, obtained with Eq. (57) should be used in Eq. (55) to calcu-
late 7,).

(4) Obtain new values of I, J, and K, using p, and the value of T,,
obtained from solving Eq. (55).

(5) Solve Eq. (57) for M, and Eq. (55) for T,. Repeat this iteration
process until successive approximations produce the same
values of M, and T, to the accuracy desired.

CALCULATED VALUES FOR AIR

Egs. P,, psia T,, °R p, psia T,°R M,

PG 142 8.52
2200 2200 0.150

BB 155 8.46

PG 130 8.93
2000 2200 0.100

BB 141 8.86

PG 158 6.53
2000 1500 0.750

BB 162 6.56

PG 128 5,84
2000 1000 1,50

BB , 127 5,89

PG 239 3.99
1500 1000 10.0

BB o 238 - 4,02

29



AEDC-TR-57-10

NORMAL SHOCK WAVES
With T, , p,, and p,, Known

When a total head tube is placed in a supersonic stream it is generally
assumed that the pressure measuring instrument involved reads the total
pressure, p,, behind a normal shock wave, The stagnation conditions p,
and 7, ahead of the shock are generally known. It is often desirable to calcu-
late the free-stream Mach number M, when these three quantities are known.
The following procedure will yield ¥, as wellas p,, T,, P, T,, T;, and
P/ 0y

(1) Assuming T,, = T, and using the values of p,, and p,,, determine

J;,, and T, .

(2) Solve Eq. (68) for T,.
(3) Determine J, for p, and the value of 7, obtained from Eq. (68).

(4) Solve Eq. (68) again for T7,,. Repeat this iteration process until
successive approximations of 7, produce the same value to the
accuracy desired.

(5) Calculate the perfect gas values of oM,, o,I,, oPi, oI,, oP: and
0(p1/p2). '

(6) Determine [, J,, (p/op) fOr oT, and opri; I, K, (0/op), for
ol, and op,; and K, for T, and p,.

(7) Solve the following equations in order: Eq. (58) for X,, Eq. (67) for
X,, Eq. (60)for T,, Eq. (60)for T,, Eq. (46)for p, where Eq. (46)
is written in the form: .

oY

-
by = p, K2 [T, oY
, = 27

Ktz th

and Eq. (71) for p,.

(NOTE: The last value obtained for a quantity should be substituted in subse-
quent equations which require that quantity. For example, when calculating
p, with Eq. (71) the values of X,, X,, T,, T,, and p, obtained in the pre-
ceding calculations should be used in Eq. (71).)

(8) Determine I, J,, K,, L, for the new values of T, and p,; and J,,
K, , L, for the new values of T, and p..
(9) Solve for r/p, and M,, respectively, from Eqs. (66) and (57).

(10) Repeat the above procedure for X,, X,, po., T, P, and T,.
Determine new values of 1,, J,, K,, L,, J,, K, and L,, and solve
again for p/p. and M,. This iteration process should be continued
until all calculated values repeat to the accuracy desired.
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With Ty Prar and M, Known

The static conditions before and after a normal shock wave and the
stagnation conditions after the shock can be determined when ¥, p,,,
and T, are known. The gas properties obtained during the calculation
process are: pi, T, p,, T,, Py, 7, and p/p,.  The calculation proce-
dure is as follows:

(1

(2)
(3)

Calculate the perfect gas values of _p T, oP,s I, and ,p,,.

1?2 07 1?

Determine 1, J,, K,, for ,p, and 7,;/,, K, for p, and T, .

o l;
Solve the following equations in order: Eq. (58) for X,, Eq.
(60) for 7, and Eq. (46) for p, in the form
oy

-1
p, = Ptz Kx Tx oY
L = ——— =
Ktx Ttl

(Note: The last value obtained for a quantity should be substituted in
subsequent equations which require that quantity. For example, when
calculating Eq. (46) for p,, the value of 7, obtained with Eq. (60) should
be used in Eq. (46).

(4)
(5)

(6)
(7)
(8)
(9)

(10)
(11)

(12)
(13)

Determine 1, J,, K, for these new values of p, and T,.

Repeat the above calculation procedure for X,, 7,, and p,. This
iteration process should be continued until all calculated values
repeat to the desired accuracy.

Determine L, for p, and 7,; /,, L, for ,p, and /T,.

Solve Eq. (66) for (p,/p,), Eq. (67) for X,, Eq. (60) for T,, and
Eq. (70) for p,.

Determine J,, L, for these new values of p, and T,.

Repeat the above calculation procedure for (p,/p,) , X,, T,, and
p. . This iteration process should be continued until all calcu-
lated values repeat to the accuracy desired.

Assuming T, = T, determine )/, and K, .

Solve Eq. (68) for 7,, and Eq. (46) for p,, in the form
oY

-1
p = P2 Ktz th oy
t2 Kz T2

Determine J,, and K,, for these new values of p, and 7,,.

Repeat the above calculation procedure for T, and p,. This
iteration process should be continued until all calculated values
repeat to the accuracy desired.
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CALCULATED VALUES

Eq. Py Ty  Pu Py T, P, T, e/ Ty M,
PG* 0.519 147 35.9 1842 0,181 1900 17,71
4000 1900 40
BB** 0.508 154 36.2 1877 0,171 1925 7.18
PG 0.389 147 27,0 1842 0,181 1900 17.71
3000 1900 30
BB 0.385 1556 27.1 1871 0,172 1919 7.74
PG 0.324 147 22,5 1842 0,181 1900 7.71
2500 1900 25 '
BB 0.323 156 22.6 1867 0,172 1915 7,72
PG 0.259 147 18,0 1842 0,181 1900 7.71
2000 1900 20
BB 0,260 156 18.1 1864 0,172 1912 7.70
PG 0.195 147 13.5 1842 0,181 1900 17.71
1500 1900 15
BB 0,195 156 13.6 1861 0,172 1909 17.68
PG 0.130 147 8.98 1842 0,181 1900 7.71
1000 1900 10 '
BB 0,131 157 9,04 1858 0,172 1906 7.66
PG 0.0648 147 4.49 1842 0,181 1900 7.71
500 1900 5
BB 0.0659 157 4,52 18565 0,172 1903 7.64
PG 0.0523 101 6.31 2134 0,175 2200 10,20
2500 2200 7
BB 0,0526 110 6,36 2167 0,163 2218 10.10
PG 0.0997 108 9.91 1901 0,176 1960 9.24
2500 1960 11
BB 0.0994 115 9,97 1928 0,167 1976 9.23
PG 0.171 131 13.5 1844 0,179 1900 8,22
2000 1900 15
BB 0.171 139 13.6 1865 0,170 1912 8,21
PG 3.19 328 88.8 1837 0,201 1900 4,90
1500 1900 100
BB 3.20 348 89.4 1855 0,192 1909 4,87
PG 1.40 259 44.5 1645 0,107 i700 5.28
1600 1700 50
BB 1,38 271 44,7 1657 0,189 1705 5.26

*Perfect gas equation
##Beattie-Brideeman equation
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ILLUSTRATIONS

Several of the thermodynamic properties and Beattie-Bridgeman
correction factors for air have been calculated using the equations
derived in the body of this report. These quantities are contained in
tabular form in Ref. 8. Graphs of the tabulated values are included
herein. Quick approximate solutions of various thermodynamic prob-
lems can be obtained using the graphs. A Mollier diagram for air is
also included; the values of enthalpy and entropy were not included in

the tables of Ref. 8.
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gases. The increase in the specific heats due to the
vibration of diatomic molecules was included by essum-
ing the molecules to be parfect harmenic oacillators,
Thermodynamic and flow process equations are theo-
retieally developed. The particular flow processea
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The Beaitic-Bridgeman equation of slale was used to
develop the equations of several of the thermodynamic
propertiea and flow process correction factors for
gases, The increase in the specific heats due to the
vibration of diatomic melecules was included by aasum-
ing the molecules to be perfect harmonic oscillators.
Thermodynamic and flow process equations are theo=
retiwcally developed. The particular flow processes
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The Beattie-Bridgeman equation of state was used to
develop the equations of several of the thermodynamic
properties and flow process correction factorg lor
gases, The increage in the apecific heats dve 1o the
vibration of distomic molecules was included by assum-
ing the molecules to be perfect harmonic oacillators.
Thermodynamic arxd flow process equations are theo-
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The Beattie-Bridgeman equation of state was used to
develop the equationa of saeveral of the thermodynamic
properties and flow process correction factors for
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vibration of diatomic molecules was included by assum=-
fng the molecules to be perfect harmonic cacillatora.
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investigated were isentropic expansion and flow threugh
normal shock waves, The calculation procedurss for
izeniropic expansions and flow through normal shock
waves are included In the appendix, Also included are
the resulis of several calculations in which air was
used ap the media of flow. Graphs of the thermody-
namic propertiesa and Beattie~Bridgeman correctlon
factora for eir are included to provide a general picture
of the affect of temperaiure and pressure.
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Investigated were {gentropic expanaion and flow through
narmal shock waves. The calculation procedures for
isentropic expansions and flaw through normal shock
waves are included in the appendix. Also included are.
the results of aeveral calculations in which air was
used as the media of flow, Graphs of the thermody=~
namic properties and Beattle-Bridgemsn correction
factors for alr are included to provide a general piciure
of the effect of temperuture and presasure.
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